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Abstract. The present work introduces the thermoelastic vibrations of nonlocal nanobeams resting on a two-parameter 
foundation. The governing equations are formulated for linear Winkler–Pasternak foundation type based on the generalized dual-
phase-lag heat conduction and nonlocal beams theories. The nanobeam is subjected to a temperature ramping function. The 
coupled equations of the problem are formulated and solved by Laplace transform technique. The effects of the nonlocal 
parameter and different foundation parameters on the field variables are illustrated graphically and discussed. The results 
obtained are consistent with previous analytical and numerical results. 
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1. Introduction 

Nanotechnology is concerned with the manufacturing of advanced materials in the nanoscale, which offers a new class of 
structures with innovative properties and improved performance devices. Among these nanostructures, some nanobeams attract 
a greater concentration due to their various possible applications, such as nanowires, nano-probes, atomic power supply, nano-
actuators, and nano-sensors. Also, nanoscale effects are significantly on the mechanical performance of nanostructures in where 
the sizes are small and similar to molecular distances. This inspired many researchers to find a new model to predict the 
mechanical behavior of these nanostructures.  

Recently, there has been an increasing number of studies on nonlocal theoretical models, which include various types of 
nonlocal elasticity approaches consisting of hardening and softening models that are extensively investigated. The theory of 
nonlocal elasticity (NET) is applied for modeling of micro/nano-scale mechanical systems due to their generalization and 
simplicity. This theory was first introduced by Eringen [1-3]. The NET theory states that the stress field at any point in the body is 
a function of the strain field at each point of the continuum object. Many studies have used the nonlocal elasticity theory (NET) to 
take into account the vibration and nanoscale effects on the nanobeams and nanostructures. Some of them are found in 
references [4–23].  

Nanobeams resting on elastic foundations are usually included in the design of aircraft structures and have wide applications 
in structural analysis. This inspired many scientists to examine the performance of structures in different kinds of elastic 
foundations. The Winkler-type elastic foundation is estimated as a series of closely spaced, mutually independent, and vertical 
linear elastic springs. The Pasternak model is a two-parameter model consists of a Winkler-type elastic spring and transverse 
shear deformation. The effect of Winkler and Pasternak elastic foundations on bending and vibration of micro-nano materials has 
been investigated by several authors [24-30].  

The above investigations clearly show that most of the studies presented in the literature are related to the nonlocal and 
elastic foundation, but studies on the nonlocal and thermoelastic vibration are very limited. Only a few articles are available in 
the literature relating to thermoelastic foundation-supported nanobeams, where the generalized thermoelasticity theories are 
employed for the mathematical formulation of the problem. In the current paper, we investigate the thermoelastic vibration of a 
nanobeam resting on the Winkler-Pasternak foundation using Eringen’s nonlocal elasticity and the thermoelastic dual-phase-lag 
model proposed by Tzou [31-33] in which the Fourier law is modified. The nanobeam is thermally loaded by ramp-type varying 
heat. The thermoelastic vibration of the temperature, deflection, the displacement and the bending moment of the nanobeam 
subjected to ramp-type varying heat are investigated. Some comparisons were presented graphically to estimate the effects of the 
nonlocal parameter and Winkler-Pasternak foundation parameters in all the field variables. The results in this work are intended 
to be useful for design, electromechanical applications and many areas of the industrial revolution.  
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2. Nonlocal Thermoelasticity with Phase Lags  

According to the nonlocal elasticity theory of Eringen, the nonlocal differential constitutive equations for homogenous 
thermoelastic materials is [1-3] 

2(1 ) i j i jξ σ τ− ∇ =  (1) 

where i jσ and i jτ are the nonlocal and local stress tensors, respectively. One may see that when the internal characteristic length is 

neglected, i.e., the particles of a medium are considered to be continuously distributed, ξ is zero, and eq. (1) reduces to the 

constitutive equation of classical local thermoelasticity. 

The generalized heat equation with phase-lags proposed by Tzou [31-33] is given by  

( )
2 2

2
02

1 1 div( )
2!

q

q EK C T u Q
t t t t tθ

τ θ
τ θ τ ρ γ

    ∂ ∂ ∂ ∂ ∂    + ∇ = + + + −        ∂ ∂ ∂ ∂ ∂  
 (2) 

Constitutive equations: 

2i j i j i j i je eτ µ λ γ θδ= + −  (3) 

Equation of motion: 

,j i j i iF uσ ρ+ = ɺɺ  (4) 

Equations (1) and (2) describe the nonlocal thermoelectricity theory. It can be seen that the corresponding local thermoelasticity is 
recovered by putting 0ξ =  in eq. (1). 

3. Formulation of the Problem 

Consider a thermoelastic nanobeam with 0 ≤ x ≤ L, 0 ≤ z ≤ h, where L and h are the length and thickness of the nanobeam. This 
nanobeam initially at temperature T0 and resting on a linear Winkler-Pasternak foundation Kw and Ks as illustrated in Fig. 1. Also, 
we consider the x axis is drawn along the axial direction of the beam and y, z axes correspond to the width and thickness, 
respectively. 
The displacement components are given by 

, 0, ( , , , ) ( , )
w

u z w x y z t w x t
x
ν

∂
=− = =

∂
 (5) 

For a one-dimensional problem, the differential form of the constitutive eq. (3) after using eqs. (1) and (5) can be expressed as [8, 
33]: 

2 2

2 2
x

x T

w
E z

x x

σ
σ ξ α θ

 ∂ ∂ − =− + ∂ ∂ 
 (6) 

where xσ  is the nonlocal axial stress, and (1 2 )T tα α ν= − .  

As is known, the Winkler model of elastic foundation is the most preliminary in which the vertical displacement is assumed to be 

proportional to the contact pressure at an arbitrary point [35]. Due to the interaction between the nanobeam and the supporting 

foundation, the normal stress per unit area fR  (foundation reaction) and vertical displacement w  at an arbitrary point on the 

lower boundary of the nanobeam hold the following relation [36, 37] 

( )2

2

,
( , )w sf

w x t
R K w x t K

x

∂
= −

∂
 (7) 

where wK  is the Winkler’s foundation constant, which is known as the modulus of the subgrade reaction, and sK  is the shear 

foundation modulus. It is noted that when 0sK = , eq.(8) is equivalent to that of the nanobeam on a Winkler foundation type; 

also, when 0w sK K= =  (the subgrade reactions are zero), indicating that the nanobeam beam does not have a foundation. The 

equation of motion for transverse vibration of nanobeams can be written as 

2 2

2 2f

M w
R A

x t
ρ

∂ ∂
− =

∂ ∂
 (8) 

 

Fig. 1. Geometry of the nanobeam on Pasternak foundation. 
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With aid of eq. (6), the flexure moment is given by 

2 2

2 2
( , ) T T

M w
M x t IE M

x x
ξ α

 ∂ ∂ − =− + ∂ ∂ 
 (9) 

where 

2

3 2

12
( , , )

h

T
h

M x z t zdz
h

θ
−

= ∫  (10) 

Also, it is exactly seen that the flexure moment of the nonlocal nanobeams is given by 

22

2 2

( , )
( , ) ( , ) ( )w s t T

w x tw
M x t A K w x t IE K M

t x
ξ ρ ξ ξ α

∂∂
= + − + −

∂ ∂
 (11) 

Substituting eq. (11) into eq. (8), one can get the motion equation of the nanobeam as 

4 2 2 2 2

1 2 3 44 2 2 2 2
0,Tw w w M

w w
x x t x x

β β ξ β β
 ∂ ∂ ∂ ∂ ∂ − + − + + =  ∂ ∂ ∂ ∂ ∂ 

 (12) 

where 

1 2 3 4, , , .w Tw s

s s s s

A KK K

IE K IE K IE K IE K

ρ αξ
β β β β

ξ ξ ξ ξ

+
= = = =

+ + + +
 (13) 

The heat conduction eq. (2) can be written as follows ( 0Q = ): 

22 2 2 2
0

2 2 2 2
1 1

2!
q E

q

C T w
z

t x z t t K t K t xθ

τ ρ γθ θ θ
τ τ

       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      + + = + + −            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂       
 (14) 

4. Solution of the Problem  

We consider the nanobeam is thermally insulated, so that / zθ∂ ∂  should vanish at the upper and lower surfaces of the 

nanobeam / 2.z h=±  Also, we assume that the increment temperature varies in a sinusoidal form along the thickness direction 
as 

( , , ) ( , )sin
z

x z t x t
h

π
θ

 =Θ   
 (15) 

Substituting eq. (15) into eq. (12), one can get the motion equation of the nanobeams as 

4 2 2 2 2
4

1 2 34 2 2 2 2 2

24
0

w w w
w w

x x t x h x

β
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π

 ∂ ∂ ∂ ∂ ∂ Θ − + − + + =  ∂ ∂ ∂ ∂ ∂ 
 (16) 

Also, the flexure moment can be determined from eqs. (11) and (15) as 

2 2

2 2 2
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t x h

α
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π
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∂ ∂
 (17) 

From eqs. (14) and (15), the generalized heat conduction equation become 

2 22 2 2 2
0

2 2 2 2
1 1

2! 24
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q
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t x h t t K t K t xθ

τ ρ γ ππ
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        ∂Θ∂ ∂ Θ ∂ ∂ ∂ ∂      + − Θ = + + −            ∂ ∂ ∂ ∂ ∂ ∂ ∂       
 (18) 

To facilitate the numerical analysis, dimensionless parameters are introduced. Now, for simplicity we will use the following non-
dimensional variables: 

{ } { } { } { }0
0 0

0 02
0

1
, , , , , , , , , , , , , , , ,
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ρ ρ
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Θ′ ′ ′= Θ = = = =
 (19) 

So, the basic eqs. (16), (17) and (18) in nondimensional forms are simplified as (dropping the primes for convenience) 

4 2 2 4 2
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x x t t x x
ξ
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 (20) 
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        ∂Θ∂ ∂ Θ ∂ ∂ ∂ ∂      + − Θ = + + −            ∂ ∂ ∂ ∂ ∂ ∂ ∂       
 (22) 
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where 

2 2 2 4 4 0
1 1 2 2 0 3 3 4 2

2 2
0

5 6 72 2 2

24
, , , ,

24
, , .w s t

T
A L A L c A L A

h

L K IE L K T
A A A

AE AEL AEL h

β
β β β

π

ξ ξ α

π

= = = =

+
= = =

 (23) 

5. Initial and Boundary Conditions  

To solve the problem, the initial and boundary conditions must be taken into consideration. The homogeneous initial 
conditions are taken as  

( , 0) ( , 0)
( , 0) 0 ( , 0)

x w x
x w x

t t

∂Θ ∂
Θ = = = =

∂ ∂
 (24) 

We will assume that the two ends of the nanobeam satisfy 

2 2

2 2

(0, ) ( , )
(0, ) ( , ) 0

w t w L t
w t w L t

x x

∂ ∂
= = = =

∂ ∂
 (25) 

Also, we consider the first end nanobeam is loaded thermally by ramp-type heating as 

0 0

0

0

0, 0,

( , ) , 0 ,

1, ,

t

t
x t t t

t

t t

 <Θ =Θ ≤ ≤ >

 (26) 

where 0t  is a non-negative constant called ramp-type parameter and 0Θ  is a constant. In addition, the temperature at the end 

boundary should satisfy the following relation 

0 on x L
x

∂Θ
= =

∂
 (27) 

6. Solution in the Laplace Transform Domain 

The closed form solution of the governing and constitutive equations can be possible by adapting the Laplace transform 
method. Taking the Laplace transform defined by the relation, 

0
( , ) ( , ) stf x s f x t e dt

∞
−= ∫  (28) 

to both sides of eqs. (20), (21) and (22) and using the homogeneous initial conditions (24), one gets the field equations in the 
Laplace transform space as 

4 2 2

10 11 44 2 2
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d w d w d
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dx dx dx
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12 6 72
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where 
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     + + + +       
= = + =

+ +

 (32) 

Elimination Θ  or w  from eqs. (29) and (31), one obtains: 

{ }( )6 4 2( ) , 0,D AD BD C w x− + − Θ =  (33) 

where the coefficients A, B and C are given by 

4 2 10 1 11 1 10 1 11, , ,
d

A A B A B B A B A C B A D
dx

= + + = + = =  (34) 

Equation (33) can be moderated to 
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{ }( )2 2 2 2 2 2
1 2 3( )( )( ) , 0,D m D m D m w x− − − Θ =  (35) 

where 2, 1,2,3nm n =  are roots of 

6 4 2 0,m Am Bm C− + − =  (36) 

The solution of the governing eq. (36) in the Laplace transformation domain can be represented as 

{ }( ) { } { }( )
3

3 3
1

, 1, 1,n nm x m x
n n n n

n

w x F C e F C e−
+ +

=

Θ = +∑  (37) 

Where the compatibility between these two equations and eq. (31), gives 

2
2

2
1

, n
n n n n

n

B m
F C

m B
= Γ Γ =−

−
 (38) 

where nC and nF  are some parameters depending on s . From eqs. (15) and (31), we get 

( ) ( )
3

3 3
1

sin n nm x m x
n n n n

n

z
x F C e F C e

h

π
θ −

+ +
=

 = +  ∑  (39) 

The axial displacement after using eq. (37) takes the form 

( ) ( )
3

3
1

n nm x m x
n n n

n

dw
u x z z m C e C e

dx
−

+
=

=− = −∑  (40) 

Substituting the expressions of w  and Θ  from eq. (37) into eq. (30), we get at the solution for the bending moment M  as 
follows 

( ) ( )( )
3

2
12 6 7 3

1

n nm x m x
n n n n

n

M x A A m A C e C e−
+

=

= − − Γ +∑  (41) 

In addition, the strain will be 

( ) ( )
3

2
3

1

n nm x m x
n n n

n

du
e x z m C e C e

dx
−

+
=

= =− +∑  (42) 

After using Laplace transform, the boundary conditions (25) - (27) take the forms 

0

2 2

2 2

0 2
0
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(0, ) ( , )
0,

1
(0, ) ( ),

( , )
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−
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= =
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 −  Θ =Θ =   

Θ
=

 (43) 

Substituting eq. (37) into the above boundary conditions, one obtains six linear equations 

( )
3

3
1

0,n n
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3

3
1
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2
3

1
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3

2
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1
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3

3 3
1

( ),n n n n
n

C C G s+ +
=

Γ +Γ =∑  (48) 

( )
3

3 3
1

0,n nm L m L
n n n n n

n

m C e C e−
+ +

=

Γ −Γ =∑  (49) 

The solution of the above system of linear equations gives the unknown parameters ( ), 1,2,...,6nC n = . To determine the studied 

fields in the physical domain, the Riemann-sum approximation method is used to obtain numerical results. The details of these 
methods can be found in [32]. 
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7. Special Cases  

The following special cases can be obtained from the system of eqs. (11), (12) and (14): 

 The equations of a coupled nonlocal thermoelasticity theory result from eq. (14), in the limiting case 0q θτ τ= = . 

 The equations of coupled local models of thermoelasticity result from eqs. (11), (12) and (14) in the limiting case by letting 
0ξ = . 

 The equations of nonlocal nanobeams resting on Winkler foundation type result from eqs. (11), (12) and (14) in the limiting 
case by letting 0sK = . 

 When 0w sK K= =  (the subgrade reactions are zero), indicating that the nanobeam does not have a foundation. 

8. Numerical Results 

To check the validity of the obtained formulations, the predicted results are compared with those available in the open 
literature. The influences of various parameters such as the material length scale, ramping time parameters and the foundation 
stiffness and foundation shear elastic on the flexure moment M , temperature θ , displacement u  and lateral vibration w  are 
investigated. The material properties of the silicon are taken in the numerical simulations [38]. 

 1 1 3 6 1
0156 Wm K , 169GPa, =2330 kgm , 0.22, 2.59 10 K , 713 J/kgK, 293K.t EK E C Tρ ν α− − − − −= = = = × = =   

The aspect ratios of the nanobeam are fixed as / 10L h =  and / 0.5b h = . The numerical results are presented graphically in Figs. 

2-9 at different positions x  in the wide range of 0.0 1.0x≤ ≤  when 0.12, 1t L= =  and / 3z h= . Numerical calculations and 

graphs have been divided into two cases. 

  

Fig. 2. The transverse deflection w with different nonlocal parameter ξ Fig. 3. The temperature  with different nonlocal parameter ξ 

  

Fig. 4. The displacement u with different nonlocal parameter ξ Fig. 5. The flexure moment M with different nonlocal parameter ξ 
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8.1 The effect of the nonlocal parameter ξ   

The importance of the nonlocal parameter ξ  is discussed in this subsection. The response of the lateral vibration, 

temperature, displacement, bending moment fields with scale coefficient is depicted Figs. (2–5). We can notice that when the 

nonlocal parameter ξ ; vanishing 0.0ξ =  indicates the old situation (local model of elasticity) while other values indicate the 

nonlocal theories of elasticity and thermoelasticity. One may also notice from Figs. (2–5) that the parameter ξ  has a significant 

effect on all the fields. This result is consistent with the results obtained by Zenkour and Abouelregal in [5, 6]. Also, it can be 

deduced that the thermal and elastic waves reach a steady-state depending on the nonlocal parameter values [39]. Furthermore, 

the obtained results are compared with those obtained by [40]. It can be observed that the results obtained well consistent with 

those provided by [40], for various non-local parameter values. The concluding remarks from the Figures can be shortened as 

follows: 

 Figures. 2 and 5 show that the lateral vibration w  increase when the value of ξ  increases, while the values of the bending 

moment M  decrease when the value of ξ  increases. 

 It can be seen from Fig. 3 that the temperature θ  does not change by changing the nonlocal parameter ξ . Our findings are 

in strong accordance with the results of Abouelregal and Zenkour's study [38, 39]. 

From Fig. 5, the values of the displacement u  decrease with increasing ξ  in the range 0.0 0.4x≤ ≤ , thereafter the variation 

became very small in the range 0.4 1.0x≤ ≤ . This shows the distinction between the local generalized thermoelasticity and the 

nonlocal generalized thermoelasticity models.  
 

 
 

Fig. 6. The lateral vibration w with different foundation (Kw, Ks) Fig. 7. The temperature  with different foundation (Kw, Ks) 

  

Fig. 8. The displacement u with different foundation (Kw, Ks) Fig. 9. The flexure moment M with different foundation (Kw, Ks) 
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8.2 The effect of the foundation parameters ( , )w sK K  

This case illustrates how the field quantities vary with various values of the foundation parameters ( , )w sK K  when 0.2.ξ =  

The numerical results are obtained and presented graphically in Figs. (6-9). Yokoyama [41] considered the free transverse vibration 

of the Euler–Bernoulli beam on a Winkler–Pasternak foundation. Togun et al. [42] investigated the nonlinear vibration of a 

nanobeam resting on a Winkler–Pasternak foundation based on Euler–Bernoulli beam theory. A comparative study was conducted 

to validate the present study. It can be seen from the figures that there is good harmony among the four results. This occurs due 

to an improvement in nanobeam rigidity when it is rested on elastic foundation. We can see the significant effect of the 

foundation parameters wK  and sK  on the lateral vibration w , displacement u  and flexure moment M . Also, we can 

conclude that: 

 In Fig. 6, the lateral vibration w  increases when one or both of the foundations wK  and sK  are increased (the effect of sK  

is greater than wK ) while in Fig. 9, the flexure moment M  increases when the foundation wK  is increased (the effect of wK  

is greater than sK ) .  

 The temperature θ  does not vary with varying the foundations wK  or sK  (as shown in Fig. 7). 

In Fig. 8, the values of the displacement u  start decreasing with the foundations wK  and sK  in the range 0.0 0.4x≤ ≤ , 

thereafter the variation became very small in the range 0.4 1.0x≤ ≤ .  

8.3 The effect of the ramp time parameter 0t  

This case is studying how the non-dimensional lateral vibration w , temperature θ , displacement u  and flexure moment 

M  vary with ramp time parameter 0t  (see Figs. 10 -13). We have compared the findings of Abouelregal and Mohammed [44] and 

Abouelregal and Marin [45] to validate the current analytical results on the thermoelastic response of a dynamic nonlocal 

nanobeam. This result is consistent with the results obtained by [43-45]. 

  

Fig. 10. The lateral vibration w with different ramp time parameter t0 Fig. 11 The temperature  with different ramp time parameter t0 

  

Fig. 12. The displacement u with different ramp time parameter t0 Fig. 13. The flexure moment M with different ramp time parameter t0 
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The conclusions from Figs. (10 -13) are as follows: 

 Figs. 10 and 13 show that the lateral vibration w  and flexure moment M  increase with increasing ramp time parameter 

0t .  

 From Fig.11, The temperature θ  decrease with increasing ramp time parameter 0t  in the range 0.0 0.2x≤ ≤ , thereafter 

the temperature θ  does not change in the range 0.2 1.0x≤ ≤ . 

In Fig. 12, the displacement u  start to decrease with increasing ramp time parameter 0t  in the range 0.0 0.2x≤ ≤ , thereafter 

the variation became very small in the range 0.2 1.0x≤ ≤ . 

8.4 The effect of the instantaneous time t  

The fourth case is studying distribution of the non-dimensional lateral vibration w , temperature θ , displacement u  and 

flexure moment M  along the axial x  and instantaneous time t  of the moving nanobeam (see Figs. 14 -17). In these figures, 

we find that all the studied fields vary with the instantaneous time t  and axial x . From Figs. (14 -17), the distributions all field 

quantities achieve their limiting values and satisfy the initial and boundary conditions. 

9. Conclusion 

In the current work, the governing equations of nonlocal nanobeams embedded in the two-parameter foundation are 
constructed based on the non-local Euler-Bernoulli beam and generalized thermoelasticity with phase lag theories. The elastic 
foundation is modelled as a two-parameter Pasternak foundation. Also, the thermoelastic vibration of the temperature, deflection, 
displacement and bending moment of nanobeam subjected to ramp-type heating is discussed and investigated. The effects of the 
nonlocal parameter, elastic coefficient of the foundation and the shear layer foundation stiffness parameters on all the field 
variables have been shown and presented graphically. If the shear layer foundation stiffness is neglected, Pasternak foundation 
becomes a Winkler foundation. It can be observed that as the nonlocal and the elastic foundation parameters increase, the 
behaviour of the field variables increase. Furthermore, it should be noted that for the higher values of the Pasternak and Winkler 
coefficients, the dimensionless deflection and critical buckling load of nanobeam are reduced. 

 
 

Fig. 14. Distribution of lateral vibration w along the axial x and time t Fig. 15 Distribution of the temperature  along the axial x and time t 

 
 

Fig. 16. Distribution of the displacement u along the axial x and time t Fig. 17. Distribution of the flexure moment M along the axial x and time t 
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Nomenclature 

, µ 

t 
 =Et /(1-2) 
T0 
T 

Θ =T-T0 
CE 
q 
ij 

eij 

L 
A=bh 
ij 
ξ  
MT 
 

Lam´e’s constants 

Thermal expansion coefficient 
Coupling parameter 
Environmental temperature 
Absolute temperature 
Temperature increment 
Specific heat 
Phase lag of heat flux 
Nonlocal stress tensor 
Strain tensor 
Nanobeam length 
Cross−section area 
Local stress tensor 
Nonlocal parameter 
Thermal moment 
Poisson’s ratio 

K 
t 

qi 
ij 
ui 
Fi 
Q 
θ 
h 
 
b 
oxyz 
 2 
E 
e 
I=bh3/12 

Thermal conductivity  
The time  
Components of the heat flows vector  
Kronecker’s delta function 
Displacement components 
Body force components 
Heat source 
Phase lag of gradient of temperature 
Nanobeam thickness 
Material density 
Nanobeam width 
Cartesian coordinate 
Laplacian operator 
Young’s modulus 
Cubical dilatation 
Inertia moment 
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